
# Technische Mathematik Metallbau Konstruktionsmechanik







## EUROPA-FACHBUCHREIHE für Metallberufe

## Technische Mathematik Metallbau Konstruktionsmechanik

Lehr- und Übungsbuch

8. überarbeitete Auflage

Bearbeitet von Lehrern an beruflichen Schulen Lektorat: Alfred Weingartner, München

VERLAG EUROPA-LEHRMITTEL · Nourney, Vollmer GmbH & Co. KG Düsselberger Straße 23 · 42781 Haan-Gruiten

**Europa-Nr.: 11710** ohne Formelsammlung **Europa-Nr.: 12121** mit Formelsammlung

Autoren:

Bulling, GerhardStudiendirektorMünchenDillinger, JosefStudiendirektor i.R.MünchenHeringer, StefanieOberfachlehrerinSchechenSchindlbeck, HaraldOberstudienratAltheimWeingartner, AlfredStudiendirektor i.R.München

Lektorat und Leitung des Arbeitskreises:

Alfred Weingartner, München

Bildbearbeitung:

Zeichenbüro des Verlags Europa-Lehrmittel, Ostfildern

8. Auflage 2020

Druck 5 4 3 2 1

Alle Drucke derselben Auflage sind parallel einsetzbar, da sie bis auf die Behebung von Druckfehlern untereinander unverändert sind.

ISBN 978-3-8085-1643-0 ohne Formelsammlung ISBN 978-3-8085-1644-7 mit Formelsammlung

Alle Rechte vorbehalten. Das Werk ist urheberrechtlich geschützt. Jede Verwertung außerhalb der gesetzlich geregelten Fälle muss vom Verlag schriftlich genehmigt werden.

© 2020 by Verlag Europa-Lehrmittel, Nourney, Vollmer GmbH & Co. KG, 42781 Haan-Gruiten http://www.europa-lehrmittel.de

Satz: Satz+Layout Werkstatt Kluth GmbH, 50374 Erftstadt Umschlag: braunwerbeagentur, 42477 Radevormwald Umschlagfoto: Eislaufhalle im Olympiapark München Druck: mediaprint solutions GmbH, 33100 Paderborn

#### Vorwort

Das vorliegende Buch **Technische Mathematik für Metallbauberufe** ist ein Lehr-, Arbeits- und Übungsbuch für die Aus- und Weiterbildung im Berufsfeld Metalltechnik, insbesondere für die Berufe **Metallbauer, Konstruktionsmechaniker** und **Anlagenmechaniker**. Es vermittelt rechnerische Grund- und Fachkenntnisse und kann sowohl unterrichtsbegleitend als auch zum Selbststudium verwendet werden.

Inhalte und Aufbau des Buches folgen dem Lernfeldkonzept der aktuellen Lehrpläne.

Dies spiegelt sich bereits in der Anordnung der Inhalte wider. Konkreten berufstypischen Kundenaufträgen folgen die notwendigen Grundlagen, um die Probleme der Aufgaben zu lösen. Dabei wurden alle Inhalte der bisherigen Auflagen erhalten, sodass erprobte und bewährte Unterrichtskonzepte weiterhin verfolgt werden können.

Der Inhalt gliedert sich in vier Hauptabschnitte:

- 1 Berechnungen zu typischen Kundenaufträgen
- 2 Technisches Rechnen
- 3 Aufgaben zur Vertiefung und Prüfungsvorbereitung
- 4 Rechnerische Grundlagen

Der Abschnitt 1 Berechnungen zu typischen Kundenaufträgen enthält typische Kundenaufträge, in denen sich die Handlungsfelder und Ausbildungsstufen der Berufsgruppe abbilden. Eine vorangestellte Übersicht gibt eine Empfehlung zur Bearbeitung in entsprechenden Lernfeldern. Dabei sind nicht alle Lernfelder aufgeführt, da sich nach dem Lernfeldkonzept aus der betrieblichen Praxis nicht für jedes Lernfeld notwendig Rechenaufgaben ergeben.

Wiederholungen rechnerischer Probleme bei den einzelnen Kundenaufträgen dienen der Wiederholung und Übung bereits bekannten Wissens. Die Lösung der Aufgaben erfolgt unter Zuhilfenahme der Einführungsbeispiele im Abschnitt 2 im gelenkten Unterricht oder in Eigenarbeit. Teilweise sind dazu auch Werte aus entsprechenden Tabellen zu entnehmen.

Die im Abschnitt 2 Technisches Rechnen aufgeführten Aufgaben können dabei zur weiteren Vertiefung und Übung eingesetzt werden. Die Abschnitte bilden jeweils eine Einheit und sind nach denselben methodischen Gesichtspunkten aufgebaut. Nach der Einführung der Formel wird diese an Musterbeispielen exemplarisch angewandt. Schwierige Aufgaben sind mit einem roten Punkt (•) gekennzeichnet.

Im Abschnitt 3 Aufgaben zur Vertiefung und Prüfungsvorbereitung sind Aufgaben zu ausgewählten Projekten und Aufgabengruppen, die sich an den Fachrichtungen bzw. Schwerpunkten der Ausbildungsberufe orientieren. Sie sollen zur Vertiefung und Prüfungsvorbereitung dienen.

Zum Ausgleich von Wissenslücken und rechnerischen Schwächen dient der Abschnitt 4 Rechnerische Grundlagen, in dem zum Nachschlagen und Üben die rechnerischen Voraussetzungen für die Berufsschule enthalten sind.

In der 8. Auflage wurde das Kapitel 2.14 Festigkeitsberechnungen im Stahlbau vollständig überarbeitet und durch das Kapitel Statische Berechnungen im Stahl- und Metallbau ersetzt. Dabei sind die aktuellen Berechnungsverfahren der DIN EN 1990 ff. und EUROCODES umgesetzt. Die Normen wurden auf den aktuellen Stand gebracht und die Abstimmung mit dem Tabellenbuch Metallbau verbessert.

Für Anregungen und sachkritische Hinweise sind wir dankbar (lektorat@europa-lehrmittel.de).

Sommer 2020 Die Autoren

1 Berechnungen zu typischen Kundenaufträgen

Seite 7 ... 34

2 Technisches Rechnen

Seite 35 ... 224

3 Aufgaben zur Vertiefung und Prüfungsvorbereitung

Seite 225 ... 248

4 Rechnerische Grundlagen

Seite 249 ... 278

## Inhaltsverzeichnis

|       | Zuordnung Lernfelder –                  |    | 2.4.4  | Mittlere Geschwindigkeit bei Kurbel-       |     |
|-------|-----------------------------------------|----|--------|--------------------------------------------|-----|
|       | Kundenaufträge/Projekte                 | 6  |        | trieben                                    | 69  |
|       | <b>5</b>                                |    | 2.5    | Kräfte an Bauelementen                     | 70  |
| 1     | Berechnungen zu typischen               |    | 2.5.1  |                                            | 70  |
|       | Kundenaufträgen                         | 7  |        | Zusammensetzen von Kräften                 | 70  |
| 1.1   | Fertigen eines Schlüsselanhängers       | 7  |        | Zerlegen von Kräften                       | 71  |
| 1.2   |                                         | ,  |        |                                            | 74  |
| 1.2   | Fertigen eines Stahlgehäuses für        | _  |        | Reibungskräfte                             | /4  |
|       | eine Standuhr                           | 8  | 2.5.5  | Seilkräfte bei Lastaufnahme-               |     |
| 1.3   | Herstellen eines Dosenquetschers        |    |        | einrichtungen                              | 76  |
|       | aus Stahlprofilen                       | 10 | 2.6    | Einfache Maschinen                         | 77  |
| 1.4   | Fertigen eines Stahlgehäuses mit        |    |        | Hebel und Drehmoment                       | 77  |
|       | Fuß für eine Leuchte                    | 11 | 2.6.2  | Hebelgesetz                                | 78  |
| 1.5   | Fertigen eines CD-Ständers              | 13 | 2.6.3  | Auflagerkräfte                             | 80  |
| 1.6   | Fertigen eines Blechtopfs               | 15 | 2.6.4  | Mechanische Arbeit und Energie             | 82  |
| 1.7   | Herstellen eines Flachmeißels           | 16 | 2.6.5  | Die schiefe Ebene                          | 84  |
| 1.8   | Fertigen von sechs Parkbänken,          |    | 2.6.6  | Der Keil als schiefe Ebene                 | 85  |
|       | Modell "Petersberg", mit Gestellen      |    | 2.6.7  | Die Schraube als schiefe Ebene             | 86  |
|       | aus Stahlprofilen                       | 17 | 2.6.8  | Rollen und Flaschenzüge                    | 87  |
| 10    | •                                       | 17 |        | Mechanische Leistung und Wirkungs-         |     |
| 1.9   | Fertigen eines Trockenstempel-          | 40 |        | grad                                       | 89  |
|       | Prägegerätes                            | 19 | 2.7    | Elektrotechnik                             | 91  |
| 1.10  | Fertigen der Fenster für ein Doppelhaus | 22 | 2.7.1  | Ohmsches Gesetz                            | 91  |
| 1.11  | Fertigen eines First-Oberlichts in      |    |        | Leiterwiderstand                           | 92  |
|       | Pfosten-Riegel-Konstruktion             | 24 |        | Reihenschaltung von Widerständen           | 93  |
| 1.12  | Fertigen einer Außentreppe              | 27 |        |                                            |     |
| 1.13  | Fertigen von Rahmenbindern              | 30 |        | Parallelschaltung von Widerständen         | 94  |
| 1.14  | Torsteuerung und Inbetriebnahme         | 32 |        | Elektrische Leistung                       | 95  |
| 1.15  | Herstellen eines geschmiedeten          |    |        | Elektrische Arbeit                         | 97  |
|       | Gartentores                             | 33 |        | Transformator                              | 98  |
|       |                                         |    | 2.8    | Hydraulik und Pneumatik                    | 99  |
| 2     | Technisches Rechnen                     | 35 |        | Druck, Druckeinheiten                      | 99  |
| 2.1   | Längenberechnungen                      | 35 | 2.8.2  | Druck und Druckausbreitung von             |     |
| 2.1.1 | Teilung von Längen                      | 35 |        | Gasen                                      | 101 |
| 2.1.2 | Kreisumfänge und Kreisteilungen         | 37 | 2.8.3  | Kolbenkräfte                               | 102 |
| 2.1.3 | Gestreckte und zusammengesetzte         | 07 | 2.8.4  | Kraftübersetzung                           | 105 |
| 2.1.5 |                                         | 38 | 2.8.5  | Kolbengeschwindigkeit                      | 107 |
| 011   | Längen                                  |    | 2.8.6  | Strömungsgeschwindigkeit                   | 108 |
|       | Maßstäbe                                | 40 | 2.8.7  | Luftverbrauch pneumatischer Zylinder       | 109 |
|       | Lehrsatz des Pythagoras                 | 41 | 2.9    | Metallbaukonstruktionen                    | 110 |
|       | Winkelfunktionen                        | 44 | 2.9.1  |                                            |     |
| 2.1.7 |                                         | 48 |        | Bauelementen                               | 110 |
| 2.2   | Flächenberechnungen                     | 50 | 2.9.2  | Teilungslängen gekrümmter Strecken         | 114 |
| 2.2.1 | Geradlinig begrenzte Flächen mit        |    |        | Oberflächen von Profilkonstruktionen       | 116 |
|       | Beispielen                              | 50 |        | Masse von Profilkonstruktionen             | 117 |
| 2.2.2 | Kreisförmig begrenzte Flächen mit       |    |        | Längenberechnungen bei Metallbau-          | 117 |
|       | Anwendungsbeispielen                    | 53 | 2.5.5  |                                            | 119 |
| 223   | Zusammengesetzte Flächen                | 55 | 206    | konstruktionen Zuschnittlängen von System- | 113 |
|       | Verschnitt                              | 56 | 2.9.0  | konstruktionen                             | 121 |
| 2.3   | Körperberechnungen                      | 57 | 007    |                                            | 121 |
|       | Volumen und Oberfläche                  | 57 | 2.9.7  |                                            | 407 |
|       |                                         |    | 0.00   | stücken                                    | 127 |
|       | Masse, Gewichtskraft                    | 60 |        | Treppenberechnung                          | 129 |
| ۷.ک.ک | Berechnung der Masse mithilfe von       | 04 | 2.10   | Blechkonstruktionen, Apparatebau           | 131 |
|       | Tabellen                                | 61 |        | Gekantete Bauteile                         | 131 |
| 2.4   | Bewegungslehre                          | 63 |        | Zugaben                                    | 133 |
| 2.4.1 | 0 0                                     | 63 |        | Abwicklungen                               | 135 |
|       | Kreisförmige Bewegung                   | 65 | 2.11   | Maschinentechnik                           | 139 |
| 2.4.3 | Ungleichförmige Bewegung                | 67 | 2.11.1 | Zahnradmaße                                | 139 |
|       |                                         |    |        |                                            |     |

Inhaltsverzeichnis 5

| 2.11.2  | Achsabstand bei Zahnrädern          | 139 | 2.17.4     | Arbeitstabelle                    | 219        |
|---------|-------------------------------------|-----|------------|-----------------------------------|------------|
| 2.11.3  | Einfache Übersetzungen              | 141 | 2.18       | Kostenrechnung                    | 221        |
| 2.11.4  | Vorschubgeschwindigkeit             | 146 | 2.18.1     | Kostenartenrechnung               | 221        |
|         | Hauptnutzungszeit beim Bohren,      |     | 2.18.2     | Kostenstellenrechnung             | 222        |
|         | Senken, Reiben                      | 148 | 2.18.3     | Kostenträgerrechnung              | 223        |
| 2.12    | Schmelzschweißen                    | 151 |            |                                   |            |
| 2.12.1  | Nahtquerschnitt und Elektroden-     |     | 3          | Aufgaben zur Vertiefung und       |            |
|         | verbrauch beim Lichtbogenschmelz-   |     |            | Prüfungsvorbereitung              | 225        |
|         | schweißen                           | 151 | 3.1        | Lernfeldbezogene Projektaufgaben  | 225        |
| 2.12.2  | Schweißzeitberechnungen beim        |     |            | Gartentor mit Stabfüllung         | 225        |
|         | Lichtbogenhandschweißen             | 154 |            | Freitragendes Schiebetor          | 226        |
| 2.12.3  | Verbrauch technischer Gase          | 156 |            | Stahltreppe                       | 227        |
| 2.12.4  | Schweißzeitberechnungen und         |     | 3.1.4      | Aluminiumfenster                  | 228        |
|         | Gasverbrauch beim Schmelz-          |     | 3.1.5      | Behälter                          | 230        |
|         | schweißen                           | 158 |            | Absauganlage                      | 232        |
| 2.13    | Wärmetechnik                        | 160 | 3.1.7      | Ablaufsteuerung                   | 234        |
| 2.13.1  | Temperatur                          | 160 | 3.2        | Fachrichtungs- und schwerpunkt-   |            |
|         | Wärmemenge                          | 160 |            | bezogene Aufgaben                 | 236        |
|         | Längen- und Volumenänderung         | 162 | 3.2.1      | Konstruktionstechnik              | 236        |
|         | Kohle- und Gasverbrauch beim        |     | 3.2.2      | Ausrüstungstechnik                | 238        |
|         | Schmieden                           | 164 | 3.2.3      | Metall- und Schiffbautechnik      | 239        |
| 2 13 5  | Wärmedurchgang an Bauelementen      | 166 | 3.2.4      | Feinblechbautechnik               | 240        |
|         | Wärmedämmung                        | 168 | 3.2.5      | Rohrleitungstechnik               | 242        |
|         | Vermeidung von Tauwasserbildung     | 100 |            | Apparatebau                       | 244        |
| 2.10.7  | auf Oberflächen                     | 170 |            | Fahrzeugbau                       | 246        |
| 2 13 8  | Wasserdampfdiffusion (Feuchte-      | 170 |            | Metallgestaltung                  | 248        |
| 2.10.0  | schutztechnische Berechnungen)      | 171 |            | 0                                 |            |
| 2 13 0  | Nachweisverfahren des Wärme-        | 171 | 4          | Rechnerische Grundlagen           | 249        |
| 2.13.3  | durchganges                         | 172 | 4.1        | Mathematische und physikalische   |            |
| 2.14    | Statische Berechnungen im Stahl-    | 1/2 |            | Begriffe                          | 249        |
| 2.14    | und Metallbau                       | 173 | 4.2        | Zahlensysteme                     | 250        |
| 2 1 / 1 | Einwirkungen auf Tragwerke          | 173 | 4.3        | Grundrechnungsarten               | 252        |
|         |                                     | 174 | 4.3.1      | Klammerausdrücke (Klammerterm)    | 252        |
| 2.14.2  | Bemessungswerte der Querschnitts-   | 179 | 4.3.2      | Strich- und Punktrechnungen       | 252        |
| 2112    | beanspruchungen                     |     |            | Potenzieren                       | 255        |
|         | Beanspruchbarkeit von Querschnitten | 184 | 4.3.4      | Radizieren (Wurzelziehen)         | 257        |
|         | Tragsicherheitsnachweis             | 185 |            | Bruchrechnen                      | 259        |
|         | Knickfestigkeit                     | 188 | 4.3.6      | Schlussrechnungen (Dreisatz-      |            |
|         | Nachweis von Schweißverbindungen    | 191 |            | rechnung)                         | 260        |
| 2.14.7  | Nachweis von Schraubenverbin-       | 405 | 4.3.7      | Prozentrechnungen                 | 261        |
|         | dungen                              | 195 |            | Winkelberechnungen                | 262        |
| 2.15    | Festigkeitsberechnungen im          |     | 4.4        | Angewandte Grundrechnungsarten    | 264        |
|         | Maschinen- und Anlagenbau           | 199 |            | Formeln (Größengleichungen)       | 264        |
|         | Beanspruchung auf Zug               | 199 |            | Zahlenwertgleichungen             | 264        |
|         | Beanspruchung auf Druck             | 201 |            | Größen und Einheiten              | 265        |
|         | Beanspruchung auf Flächenpressung   | 203 |            | Darstellung großer und kleiner    | 200        |
|         | Beanspruchung auf Schub (Scherung)  | 204 | 7.7.7      | Zahlenwerte                       | 265        |
|         | Schneiden von Werkstoffen           | 206 | 445        | Rechnen mit physikalischen Größen | 266        |
|         | Beanspruchung auf Biegung           | 208 |            | Umrechnen von Einheiten           | 266        |
| 2.15.7  | Beanspruchung auf Torsion           |     |            | Umstellen von Formeln             | 269        |
|         | (Verdrehung)                        | 211 | 4.4.7      | Grafische Darstellungen von       | 203        |
| 2.16    | NC-Technik                          | 213 | 4.5        | Funktionen und Messreihen         | 272        |
| 2.16.1  | Berechnen von Werkstückkontur-      |     | 16         | Taschenrechner                    | 272<br>275 |
|         | punkten über Hilfsdreiecke          | 213 | <b>4.6</b> | Aufbau und Tastenfeld eines       | 2/0        |
| 2.16.2  | Berechnen von Werkstückkontur-      |     | 4.0.1      | Taschenrechners                   | 275        |
|         | punkten über Winkelbeziehungen      | 215 | 460        |                                   | 275        |
| 2.17    | Steuerungs- und Informationstechnik | 217 |            | Eingabe von Zahlen                | 275        |
|         | Schaltlogik                         | 217 | 4.0.3      | Technische Berechnungen mit dem   | 270        |
|         | Logikplan                           | 218 |            | Taschenrechner                    | 276        |
|         | Funktionsgleichung                  | 219 | Sachv      | vortverzeichnis                   | 279        |
|         |                                     |     |            |                                   |            |

#### Zuordnung Lernfelder – Kundenaufträge/Projekte

Die nachfolgende Tabelle gibt eine Übersicht über die Möglichkeiten, wie die einzelnen Kundenaufträge/Projekte den Lernfeldern der Lehrpläne für Metallbauer/Metallbauerin und Konstruktionsmechaniker/Konstruktionsmechanikerin zugeordnet werden können. Dabei handelt es sich um Vorschläge, die der jeweiligen Organisation der Schule angepasst werden müssen. Die Aufgaben der 10. Jahrgangsstufe eignen sich für alle Metallberufe.

| Lernfeld                                                                                                                                 | Kundenaufträge/Projekt                                                     | Seite           |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------|--|--|--|--|--|--|--|
| Jahrgangsstufe 10: Metallbauer/Metallbauerin und Konstruktionsmechaniker/Konstruktionsmechanikerin bzw. alle neu geordneten Metallberufe |                                                                            |                 |  |  |  |  |  |  |  |
| Fertigen von Bauelementen mit handgeführten<br>Werkzeugen                                                                                | Fertigen eines Schlüsselanhängers                                          |                 |  |  |  |  |  |  |  |
| Fertigen von Bauelementen mit Maschinen                                                                                                  | Fertigen eines Stahlgehäuses für eine Standuhr                             | 8               |  |  |  |  |  |  |  |
| Herstellen einfacher Baugruppen                                                                                                          | Herstellen eines Dosenquetschers aus Stahlprofilen                         | 10              |  |  |  |  |  |  |  |
|                                                                                                                                          | Fertigen eines Stahlgehäuses mit Fuß für eine<br>Leuchte                   | 11              |  |  |  |  |  |  |  |
| Jahrgangsstufe 11: Metallbauer/Metallbauerin                                                                                             |                                                                            |                 |  |  |  |  |  |  |  |
| Herstellen von Blechbauteilen                                                                                                            | Fertigen eines CD-Ständers                                                 | 13              |  |  |  |  |  |  |  |
|                                                                                                                                          | Fertigen eines Blechtopfs                                                  | 15              |  |  |  |  |  |  |  |
| Herstellen von Umformteilen                                                                                                              | Herstellen eines Flachmeißels                                              | 16              |  |  |  |  |  |  |  |
| Herstellen von Konstruktionen aus Profilen                                                                                               | Fertigen von 6 Parkbänken<br>Fertigen eines Trockenstempel-Prägegerätes    | 17<br>19        |  |  |  |  |  |  |  |
| Herstellen von Treppen und Geländern                                                                                                     | Fertigen einer Außentreppe<br>Stahltreppe                                  | 27<br>227       |  |  |  |  |  |  |  |
| Herstellen von Schmiedeteilen                                                                                                            | Herstellen eines Flachmeißels                                              | 16              |  |  |  |  |  |  |  |
| Jahrgangsstufe 12/13: Metallbauer/Metallbauerin                                                                                          |                                                                            |                 |  |  |  |  |  |  |  |
| Instandhalten von Systemen des Metall- und Stahlbaus                                                                                     | Torsteuerung und Inbetriebnahme                                            | 32              |  |  |  |  |  |  |  |
| Herstellen von Fenstern, Fassaden und<br>Glasanbauten                                                                                    | Fertigen der Fenster für ein Doppelhaus<br>Fertigen eines First-Oberlichts | 22<br>24        |  |  |  |  |  |  |  |
| Herstellen von Türen, Toren und Gittern (Metallgestalter)                                                                                | Herstellen eines geschmiedeten Gartentores                                 | 33              |  |  |  |  |  |  |  |
| Herstellen von Türen, Toren und Gittern (Konstruktionstechnik)                                                                           | Gartentor mit Stabfüllung                                                  | 225             |  |  |  |  |  |  |  |
| Herstellen von Stahl- und Metallbaukonstruktionen                                                                                        | Fertigen von Rahmenbindern                                                 | 30              |  |  |  |  |  |  |  |
| Jahrgangsstufe 11: Konstruktionsmechaniker/Konstr                                                                                        | uktionsmechanikerin                                                        |                 |  |  |  |  |  |  |  |
| Herstellen von Baugruppen aus Blechen                                                                                                    | Fertigen eines Blechtopfs                                                  | 15              |  |  |  |  |  |  |  |
| Herstellen von Konstruktionen aus Blechbauteilen                                                                                         | Fertigen eines CD-Ständers                                                 | 13              |  |  |  |  |  |  |  |
| Umformen von Profilen                                                                                                                    | Herstellen eines Flachmeißels                                              | 16              |  |  |  |  |  |  |  |
| Herstellen von Baugruppen aus Profilen                                                                                                   | Fertigen von 6 Parkbänken                                                  | 17              |  |  |  |  |  |  |  |
| Jahrgangsstufe 12/13: Konstruktionsmechaniker/Konstruktionsmechanikerin                                                                  |                                                                            |                 |  |  |  |  |  |  |  |
| Instandhalten von Produkten der Konstruktionstechnik                                                                                     | Torsteuerung und Inbetriebnahme                                            | 32              |  |  |  |  |  |  |  |
| Herstellen von Konstruktionen aus Profilen                                                                                               | Stahltreppe<br>Fertigen einer Außentreppe<br>Fertigen von 6 Parkbänken     | 227<br>27<br>17 |  |  |  |  |  |  |  |
| Herstellen von Produkten der Konstruktionstechnik                                                                                        | Fertigen von Rahmenbindern                                                 | 30              |  |  |  |  |  |  |  |
| Ändern und Anpassen von Produkten der<br>Konstruktionstechnik                                                                            | Torsteuerung und Inbetriebnahme                                            | 32              |  |  |  |  |  |  |  |

### 1 Berechnungen zu typischen Kundenaufträgen

### 1.1 Fertigen eines Schlüsselanhängers

Kundenauftrag: Es soll ein Schlüsselanhänger in Form eines Vorhängeschlosses für Werbezwecke hergestellt werden. Er besteht aus drei Bauteilen (Bild 1):

- Pos. 1 dem Schließblock aus einer Aluminiumlegierung mit den Maßen 40 × 15 × 30.
- Pos. 2 dem Bügel aus einem Rundstab 5 DIN EN 10088 1.4301
- Pos. 3 einer galvanisch verzinkten Rändelmutter DIN 467 M5 5.
- Der Schließblock soll nach der Allgemeintoleranz DIN ISO 2768-01 gefertigt werden. Für die Funktionstüchtigkeit sind drei Nennmaße (Bild 2) mit unterschiedlichen Toleranzklassen besonders wichtig:

 $l_1$ = 25 mm Toleranzklasse f,  $l_2$  = 6 mm Toleranzklasse m und  $l_3$  = 30 mm Toleranzklasse c.

Für die drei Längen sind folgende Maße zu ermitteln:

- a) die Grenzabmaße,
- b) die Höchstmaße  $G_{OB}$ ,
- c) die Mindestmaße GuB und
- d) die Toleranzen  $T_{\rm B}$  in mm.

Methodische Lösungshilfe siehe Seite 252

- Zur Fertigung der Bohrungen an der Ständerbohrmaschine sind für die Spiralbohrer aus Schnellarbeitsstahl die notwendigen Drehzahlen zu berechnen.
  - a) Welche maximale Schnittgeschwindigkeit  $v_c$  in m/min soll für diese Al-Legierung nach Tabelle verwendet werden?
  - b) Welche Drehzahl  $n_1$  in Umdrehungen/min ist für den Durchmesser  $d_1 = 5.5$  mm einzustellen?
  - c) Welche Drehzahl  $n_2$  muss für den Durchmesser  $d_2 = 13$  mm eingestellt werden?

- 3. Der Bügel (Bild 3) soll mithilfe einer Biegevorrichtung gefertigt werden. Auf welche Zuschnittlänge L muss der Rundstab zugeschnitten werden? Methodische Lösungshilfe siehe Seite 38
- 4. Mit einer Handhebelschere sollen die Bügel ohne Verschnitt abgelängt werden. Wie viele Bügel ergeben sich aus einem 6 m langen Stab?
  Methodische Lösungshilfe siehe Seite 36
- 5. Es soll zusätzlich ein Schließblock aus einem nichtrostenden Stahl hergestellt werden. Wie groß ist das Volumen des Schließblocks in dm³, wenn nur die Durchgangsbohrung (Bild 2) d = 13 mm berücksichtigt wird? Wie groß ist der Masseunterschied in Gramm und in Prozent ausgehend von der Aluminiumausführung?
  Methodische Lösungshilfe siehe Seite 60

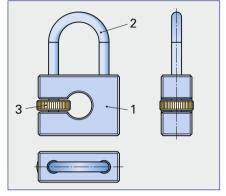



Bild 1

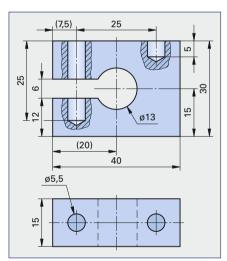



Bild 2

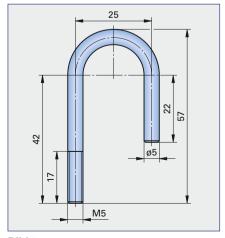



Bild 3

#### 1.2 Fertigen eines Stahlgehäuses für eine Standuhr

Kundenauftrag: In einer Kleinserie sollen 75 Standuhren, bestehend aus einem Gehäuse (eine Stahlkonstruktion) und einem elektronischen Uhrwerk, gefertigt werden. Das Gehäuse soll aus den folgenden Blechen, Form- und Stabstählen hergestellt werden:

- Pos. 1 der Standfuß aus einem U-Profil DIN 1026 S235 JR U 40 × 120.
- Pos. 2 der Bügel aus einem Flachstab EN 10058 30  $\times$  3  $\times$  6000 M Stahl DIN EN 10025 S235JR,
- Pos. 3 das Ziffernblatt, sowie Pos. 4 die Rückwand aus einem Blech EN 10131 2 × 84 × 87 Stahl DIN 10130 DC01 Am,
- Pos. 5 die zwei Verbindungsstücke aus einem Vierkantstab EN 10059 – 15 x 24 × 6000 M Stahl DIN EN 10025-S235 JR.

Die einzelnen Positionen werden durch Zylinderschrauben mit Innensechskant ISO  $4762 - M5 \times 12 - 8.8$  (Pos. 6) lösbar verbunden (Bild 1).

- Der Bügel (Bild 2) soll hergestellt werden. Wie groß ist die Zuschnittlänge L? Methodische Lösungshilfe siehe Seite 38
- Als Alternative soll ein zweiter Bügel mit einer anderen Form (Bild 3) hergestellt werden. Die Zuschnittlänge L und der Längenunterschied zum Halbkreismodell in Prozent sind zu berechnen.
  - Methodische Lösungshilfe siehe Seite 38
- Für die beiden Bügelmodelle sind die Massen mithilfe der längenbezogenen Masse m' = 0,705 kg/m zu berechnen.
   Methodische Lösungshilfe siehe Seite 61
- Für das Verbindungsstück (Bild 4) sind die folgenden Größen zu ermitteln:
  - a) der Durchmesser der Kernlochbohrung für die Gewinde M5 nach DIN 13-1 und
  - b) das Volumen eines Verbindungsstückes abzüglich der drei Durchgangsbohrungen für die Gewindeherstellung.

- Wie groß ist die Masse eines Verbindungsstückes bei einem spezifischen Gewicht für Stahl von 7,85 kg/dm<sup>3</sup>? Methodische Lösungshilfe siehe Seite 60
- Im Standfuß müssen zwei Bohrungen mit einem Durchmesser von 6 mm zur Befestigung der Verbindungsstücke ausgeführt werden.
  - a) Welche maximale Schnittgeschwindigkeit ist für unlegierte Baustähle nach Tabelle zu wählen?
  - b) Die einzustellende Drehzahl ist zu berechnen. Methodische Lösungshilfe siehe Seite 65

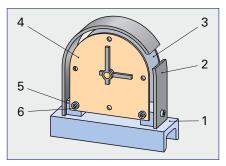



Bild 1

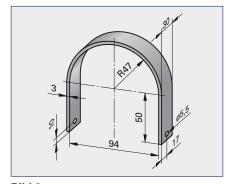



Bild 2

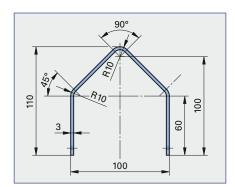



Bild 3

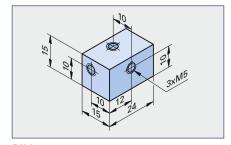



Bild 4

- 7. Das Ziffernblatt Pos. 4 und die Rückwand Pos. 3 sollen komplett zum Schutz vor Korrosion nasslackiert werden. Die Bohrungen bleiben unberücksichtigt und die Kosten für 1 m² Klarlack betragen 1,99 €.
  - a) Es ist die zu lackierende Fläche für das Halbrundmodell der Kleinserie von 75 Uhren zu berechnen (**Bild 1**).
  - b) Als Vergleich soll die Gesamtfläche der dreieckigen Alternativserie bestimmt werden (Bild 2).
  - c) Wie hoch sind die Lackkosten der beiden Varianten bei einem Lackverlust von 15% am gesamten Flächeninhalt?

Methodische Lösungshilfe siehe Seite 50

- 8. Die Massen für ein Ziffernblatt Pos. 4 beider Modelle sind mithilfe der flächenbezogenen Masse m" für das Blech EN 10131 1,5 × 84 × 87 Stahl DIN 10130 DC01 Am zu berechnen. Die Bohrungen bleiben unberücksichtigt. Methodische Lösungshilfe siehe Seite 61
- **9.** Wie viele Stangen mit je L = 6 m sind von dem
  - a) U-Profil DIN 1026 S235 JR U 40 × 120,
  - b) dem Flachstab EN 10058 30 × 3 × 6000 M Stahl DIN EN 10025 S235JR für das Halbrundmodell und
  - c) dem Vierkantstab EN 10059 15 × 24 × 6000 M Stahl DIN EN 10025 S235JR

für die Produktion von 75 Uhren zu bestellen? Die Schnittbreite des Sägeblattes beträgt 3 mm.

Methodische Lösungshilfe siehe Seite 36

**10.** Welche Drehzahlen  $n_1$  und  $n_2$  sind nach dem Schaubild **(Bild 3)** zum Bohren der Durchmesser  $d_1 = 5,5$  mm und  $d_2 = 10$  mm bei einer Schnittgeschwindigkeit  $v_c = 25$  m/min einzustellen?

Methodische Lösungshilfe siehe Seite 65

- 11. Als alternative Gestaltung für den Standfuß werden trapezförmige Ausbrüche an beiden Schenkeln des U-Profils hergestellt (Bild 4).
  - a) Welche Fläche hat der Ausbruch?
  - b) Wie groß ist das Maß x? Methodische Lösungshilfe siehe Seite 41
- 12. Die beiden Ausbrüche sollen mithilfe von Bohrungen entlang der Ausbruchkante mit einem Meißel herausgestemmt werden (Bild 4). Die Anrisslinien für die Bohrungen befinden sich in 3 mm Entfernung von den entstehenden Körperkanten. Der Bohrerdurchmesser beträgt d = 4 mm. Die Anrisslinie hat eine Länge von 71 mm. Zwischen den Bohrungen soll jeweils ein mindestens 1 mm breiter Steg entstehen. Die beiden Randabstände betragen a = 3,5 mm.
  - a) Wie viele Bohrungen sind auszuführen?
  - b) Welche Stegbreite b in mm wird tatsächlich erreicht?
  - c) Wie groß ist der Abstand p von Bohrungsmittelpunkt zu Bohrungsmittelpunkt?

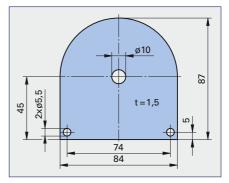



Bild 1

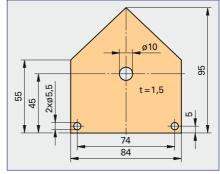



Bild 2

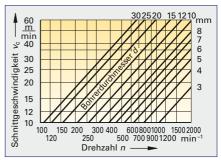



Bild 3

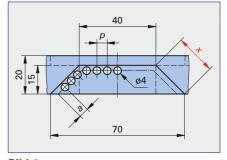



Bild 4

### 1.3 Herstellen eines Dosenquetschers aus Stahlprofilen

Kundenauftrag: Aus Platzgründen muss der im Haushalt anfallende Blechdosenabfall auf das kleinstmöglichste Maß zusammengepresst werden. Hierfür sollen 28 Dosenquetscher aus Stahlprofilen und Normteilen hergestellt werden. Der Quetscher (Bild 1) soll aus folgenden Stahlprofilen gefertigt werden:

- Pos. 1 Dosenaufnahme aus einem U-Profil DIN 1026-2 UPE 160 – S235JR;
- Pos. 2 Druckplatte aus einem Breitflachstahl DIN 59200 S235JR 6 × 180;
- Pos. 3 Haltewinkel aus L EN 10056-1 40 × 40 × 5 S235 JR;
- Pos. 4 Distanzrohre aus HFCHS DIN EN 10210 S275J0 26,9 × 2.6:
- Pos. 5 Bolzen aus einem Rundstab EN 10060 20 M Stahl DIN EN 10025 S235JR und
- Pos. 6 Hebel aus einem Hohlprofil DIN EN 10219 S355J0  $40 \times 20 \times 2$ .
- 1. Der Hebel Pos. 6 soll mittig mit den beiden Distanzrohren Pos. 4 zwischen den beiden U-Profilschenkeln Pos. 1 gehalten werden (Bild 2). Auf welche Länge x müssen die Distanzstücke zugeschnitten werden, damit sich ein Spiel von 1 mm ergibt?
  - Methodische Lösungshilfe siehe Seite 35
- Es sollen die Materialeinzelkosten errechnet werden. Für den Stahlpreis werden 1,60 €/kg angesetzt. Für den Bolzen Pos. 5 ist eine längenbezogene Masse von m' = 2,47 kg/m anzunehmen. Die Zuschnittlängen sind aus dem Bild 2 zu entnehmen.
  - a) Wie groß ist die Gesamtmasse bei einem Verschnitt von 3 %?
  - b) Welche Materialkosten ergeben sich für einen Dosenquetscher?
  - Methodische Lösungshilfe siehe Seite 61 und 221
- 3. Wie viele Stangen mit je einer Länge von 6 m sind von den einzelnen Profilen für die Herstellung der 28 Dosenquetscher zu bestellen? Die Sägeblattbreite beträgt 3 mm. Methodische Lösungshilfe siehe Seite 36
- 4. Welches Drehmoment in Nm wird durch den Hebel (Bild 3) mit einer Handkraft F von 200 N erzeugt? Methodische Lösungshilfe siehe Seite 77
- Um eine Konservendose zu zerquetschen, ist eine Kraft F<sub>1</sub> von mindestens 800 N erforderlich (Bild 4).
  - a) Welche Handkraft F<sub>2</sub> in N ist dafür mindestens notwendig?
  - b) Welche Handkraft  $F_2$  in N wäre nötig, wenn der Hebel um 200 mm verlängert wird?

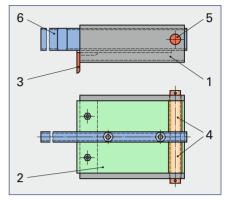



Bild 1

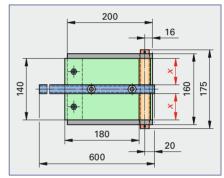



Bild 2

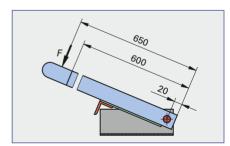



Bild 3

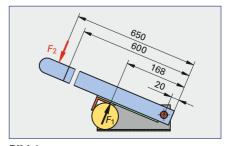



Bild 4

#### 1.4 Fertigen eines Stahlgehäuses mit Fuß für eine Leuchte

Kundenauftrag: Es soll ein Stahlgehäuse mit Fuß für eine Lampe gefertigt werden (Bild 1). Der zylindrische Lampenkörper Pos. 1 soll um die Achsen x–x und y–y verstellbar und in einer gewünschten Position fixiert werden können. Der Lampenkörper soll mit einer Dreiwalzenbiegemaschine gerundet und durch Punktschweißen verbunden werden. Als Blechversteifung dienen Sicken, wobei an einer Seite ein Deckel Pos. 2 für die Aufnahme der Lampenfassung eingeschweißt werden muss. Die Verstellung um die x–x-Achse soll durch Blindnietmuttern im Lampenkörper und die Rändelschrauben durch den Bügel Pos. 3 erfolgen. Die Verstellung um die y–y-Achse soll über den Bügel und den Lampenfuß mithilfe einer Sechskant-Hutmutter bewerkstelligt werden. Der Lampenfuß Pos. 4 soll aus einem Rundprofil mit einem M8-Außengewinde und einer angeschweißten Ronde Pos. 5 bestehen.

 Der Lampenkörper Pos. 1 und der Deckel Pos. 2 sollen aus einem Blech DIN EN 10131 – 0,8 Stahl EN 10130 DC04 Am hergestellt werden (Bild 1).

Zu berechnen sind:

- a) die Zuschnittlänge des Lampenkörpers bei einer Überlappung von 8 mm (Bild 2),
- b) für eine spätere Nasslackierung die Manteloberfläche bei einer Zuschnittbreite *B* = 150 mm und
- c) die Masse.

Methodische Lösungshilfe siehe Seite 38 und 60

- 2. Der Deckel Pos. 2 mit Rand zum Anschweißen (Bild 2) soll mit der Kreismesserschere zugeschnitten werden. Auf welchen Durchmesser muss diese eingestellt werden? Methodische Lösungshilfe siehe Seite 35
- Der Lampenbügel Pos. 3 (Bild 3) soll aus einem Flachstab EN 10058 – 20 × 3 M Stahl DIN EN 10025 – S235JR hergestellt werden.
  - a) Auf welche Länge muss der Flachstab zugeschnitten werden?
  - b) Wie groß ist die Masse m bei einer längenbezogenen Masse m' = 0,471 kg/m?

Methodische Lösungshilfe siehe Seite 36 und 61

**4.** Zu berechnen sind die Bohrerdrehzahlen bei einer Schnittgeschwindigkeit von  $v_c = 30$  m/min für die folgenden Bohrungen (Bild 3):  $d_1 = 8,3$  mm und  $d_2 = 5,3$  mm. Es steht eine Standbohrmaschine mit folgender Getriebeabstufung zur Verfügung: n = 900, 1100, 1300, 1800 und 2000 1/min.

Welche der Einstellungen für die Bohrungen sind zu wählen?

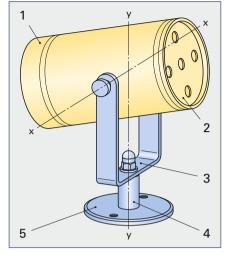



Bild 1

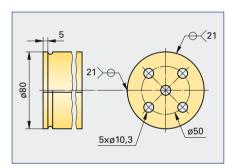



Bild 2

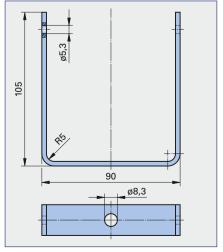



Bild 3